您现在的位置是:网站首页>电力电气>基于多变量气象因子的LMBP电力日负荷预测
基于多变量气象因子的LMBP电力日负荷预测
简介
摘 要:
提出基于主成分分析处理多天气因素的LMBP电力负荷预测模型。采用主成分分析技术对多气象因素进行降维处理, 提取多天气因素特征量,既全面表征天气因素对电力负荷的影响,又简化预测模型。将得到的新气象特征量与历史负荷数据共同作为建模对象。采用基于L-M优化算法的BP神经网络(LMBP)进行预测分析,通过最速梯度下降法和牛顿法之间的自适应 调整优化网络权值,有效提高网络的收敛速度和泛化能力。通过对美国南部某地区实际电力负荷系统进行预测分析表明该方 法可以有效提高预测精度和预测效率。
摘 要:
提出基于主成分分析处理多天气因素的LMBP电力负荷预测模型。采用主成分分析技术对多气象因素进行降维处理, 提取多天气因素特征量,既全面表征天气因素对电力负荷的影响,又简化预测模型。将得到的新气象特征量与历史负荷数据共同作为建模对象。采用基于L-M优化算法的BP神经网络(LMBP)进行预测分析,通过最速梯度下降法和牛顿法之间的自适应 调整优化网络权值,有效提高网络的收敛速度和泛化能力。通过对美国南部某地区实际电力负荷系统进行预测分析表明该方 法可以有效提高预测精度和预测效率。
下一篇:基于神经网络的电力变压器状态监测
相关文章
推荐下载
