您现在的位置是:网站首页>机械工程>真空管道高速列车气动特性分析
真空管道高速列车气动特性分析
简介
摘要∶为研究低压环境下真空管道高速列车的气动特性,建立低压环境下真空管道高速列车空气动力学计算的流体模型、数学模型和数值模型,研究管道压力(1.01×10~1.01×10*Pa)、阻塞比(0.2~0.7)和列车速度(600~1000km/h)对真空管道高速列车的阻力系数、气动阻力和气动热效应的影响。计算结果表明,在低压(1.01×10~1.01×10*Pa)环境下,真空管道中的空气流动可以采用连续介质模型描述,真空管道高速列车的绕流流场采用三维可压缩 Navier-Stokes 方程描述。高速列车的腾擦阻力系数远小于压差阻力系数,压差阻力系数和气动阻力系数基本上与管道压力和列车速度无关,而主要依赖于阻塞比。高速列车的气动阻力与管道压力近似呈线性关系,与列车速度近似成平方关系,且随着阻塞比的增加而增大。列车表面的最大温度基本上与管道压力无关,而主要由列车速度和阻塞比决定。
摘要∶为研究低压环境下真空管道高速列车的气动特性,建立低压环境下真空管道高速列车空气动力学计算的流体模型、数学模型和数值模型,研究管道压力(1.01×10~1.01×10*Pa)、阻塞比(0.2~0.7)和列车速度(600~1000km/h)对真空管道高速列车的阻力系数、气动阻力和气动热效应的影响。计算结果表明,在低压(1.01×10~1.01×10*Pa)环境下,真空管道中的空气流动可以采用连续介质模型描述,真空管道高速列车的绕流流场采用三维可压缩 Navier-Stokes 方程描述。高速列车的腾擦阻力系数远小于压差阻力系数,压差阻力系数和气动阻力系数基本上与管道压力和列车速度无关,而主要依赖于阻塞比。高速列车的气动阻力与管道压力近似呈线性关系,与列车速度近似成平方关系,且随着阻塞比的增加而增大。列车表面的最大温度基本上与管道压力无关,而主要由列车速度和阻塞比决定。
下一篇:设备管理与点检维修
推荐下载
